For a Better Net-Zero Tomorrow ### > Direct Air Capture ### What is Direct Air Capture? Direct Air Capture (DAC) is an important climate solution that removes excess carbon dioxide (CO₂) directly from the atmosphere. Science and industry agree that DAC projects are an urgent necessity to remove excess CO₂ from the atmosphere. This will help to prevent worsening extreme weather events, such as hurricanes, droughts, and floods, in the long term. ## Is DAC the same as Point Source CO₂ Capture? Unlike carbon capture, which is situated at a point source, like a factory or power plant, and prevents emissions from entering the atmosphere, DAC removes CO₂ that has already been emitted into the atmosphere directly from the air. None of the CO₂ Project Cypress removes will be used to enable fossil fuel extraction through methods like enhanced oil recovery. Carbon capture and storage (CCS) usually captures fossil CO₂ from point sources (= avoided emissions) DAC+S is carbon negative, while CCS achieves results closer to carbon neutrality. #### The Climeworks Direct Air Capture Process #### The Heirloom Direct Air Capture Process ## How does DAC technology work? Project Cypress will deploy proven DAC technology from two companies: Climeworks and Heirloom. Climeworks' technology includes modular CO₂ collectors that can be stacked to build facilities at any capacity and are powered solely by renewable and waste energy. The collectors remove CO₂ from the air: First, air is drawn into the collector, where the CO₂ is captured on the surface of a highly-selective filter material in a process called "adsorption." Next, when the filter is full of CO₂, the collector is closed and the material is heated to about 210°F to release the CO₂ in a process called "desorption." The CO₂ is collected in high purity and concentration and the process repeats. Heirloom's technology rapidly accelerates the natural processes that enable limestone to adsorb CO_2 from the air from a time span of years down to days. Limestone is the world's most abundant material and is used in medicine, cosmetics, and food production among other uses. In this process, the limestone is heated in a renewable-energy powered electric kiln to remove the CO_2 which is then permanently stored. The mineral is laid on vertically stacked trays – where the limestone acts like a sponge, pulling CO_2 from the atmosphere. This process is repeated over again in a loop to continuously sponge CO_2 from the atmosphere. # Where does the CO₂ go once it's been captured? Once captured, the CO₂ is stored underground in cooperation with an experienced storage partner. Storing CO₂ underground has been an industry practice for more than four decades and is well-understood and safe. Wells used to inject CO₂ into the ground are Class VI wells, built with strong materials that are highly tolerant to CO₂ and built to prevent leaks and corrosion. For this project, CO₂ will be stored about 7,000 feet underground.